Inform today, better decide tomorrow.
An diesem Tag vor 30 Jahren, am 16.08.1993, erschien in der Newsgroup comp.os.linux.development
eine Ankündigung, die den Anfang eines der größten und langlebigsten Projekte im Linux-Ökosystem markieren sollte. Lasst uns für einen kurzen Moment zurückblicken.
Es ist nicht nur ein gepimptes SLS, es ist das "Debian Linux Release". Ian Murdock, der selbst mit der vermutlich ersten Linux-Distribution unzufrieden war und beschlossen hat, die Sache selbst in die Hand zu nehmen, hätte sich womöglich nie erträumen können, dass sein "brand-new Linux release", wie er es damals nannte, irgendwann seinen 30. Geburtstag feiern würde.
Im Laufe der Jahre hat Debian bewiesen, dass es mehr als nur ein übereifriger Rebell unter den Betriebssystemen ist. Es hat die Grundlage für viele andere Distributionen wie z. B. Ubuntu gelegt. Es hat die Freiheit und Offenheit verkörpert, die das Herzstück der Open-Source-Bewegung bilden. Es hat glaubhafte Alternativen zu proprietären Betriebssystemen aufgezeigt und Zweifler zum Schweigen gebracht. Auch, wenn der letzte Punkt in der öffentlichen Diskussion nicht ganz offensichtlich ist, sprechen die Zahlen für sich: Debian ist ein fester Bestandteil vieler produktiver Serversetups.
Mit der tief verwurzelten Philosophie, die sich im Debian-Gesellschaftsvertrag widerspiegelt, unterstreicht das Projekt seine kompromisslose Haltung zugunsten freier …
Das in San Francisco ansässige Softwareunternehmen HashiCorp, bekannt für seine Cloud-Tools wie Terraform, Vagrant oder Vault, ändert seine Lizenzbedingungen. In einer Ankündigung wird der Wechsel von der Mozilla Public License 2.0 zur Business Source License mit der Gewährleistung kontinuerlicher Investitionen des Unternehmens in seine Community begründet.
HashiCorp hält weiterhin daran fest, seinen Quellcode frei verfügbar zu machen. Allerdings gibt die BSL dem Unternehmen mehr Kontrolle darüber, wer den Code kommerziell nutzen darf. Mit anderen Worten, wer Software von HashiCorp produktiv nutzt und sie für ein Konkurrenzprodukt einsetzen möchte, ist von nun an nicht nur bösen Blicken, sondern auch rechtlichen Hürden ausgesetzt.
Einige Unternehmen haben diesen Schritt bereits vollzogen und sind auf unfreie Lizenzmodelle umgestiegen. Couchbase, Sentry und MariaDB MaxScale sind einige Beispiele dafür. Dies wirft natürlich die Frage auf, ob wir uns von der Idee freier Open-Source-Software verabschieden müssen. Die Omnipräsenz der Cloud-Industrie, die seit den 2010er-Jahren sich großer Beliebtheit erfreut, droht ernsthaft, die FOSS-Welt zu destabilisieren.
Stellt dir vor, du hast einen reichen Obstgarten erschaffen, in dem jeder sich frei der Früchte bedienen kann. Größzügig lädst du alle ein, sich nach Belieben zu bedienen und empfiehlst ihnen, selber Bäume zu pflanzen oder die Saaten weiterzuverbreiten. Eines …
Auch in der Sommerpause gibt es vereinzelte Neuigkeiten aus der Welt der künstlichen Intelligenz. Heute möchte ich mich dabei wieder einmal den Agenten widmen.
Beim Einsatz von ChatGPT und ähnlichen LLMs stellt sich schnell die Frage, ob da nicht auch mehr geht. Ob das System nicht zur Abbildung alltäglicher Arbeit herangezogen werden kann. Insbesondere mit Anfang des Jahres aus dem Winterschlaf erwachten Konzept der Agenten wurde die Zusammenarbeit unterschiedlicher KI-Instanzen wieder relevant und spannend. Umso interessanter ist es, diese Konzepte zusammenzuführen.
AutoGPT und Co. sind diesem Ziel gefolgt und konnten schon lustige Ergebnisse demonstrieren, wenn man die LLMs sinnbildlich an den eigenen Computer anschließt und z. B. die Ausgaben des LLMs als Eingabe für die eigene Shell verwendet (nicht nachmachen, ist eine dumme Idee). Doch auch hier gab es einige Schwächen, ganz rund lief alles bei weitem noch nicht.
Die Autoren hinter MetaGPT (hier im Bezug auf griechisch meta = über) haben systematisch verschiedene Rollen inkl. ihrer Interaktionen ausgearbeitet und stellen ihre Ergebnisse als Preprint und ihr Framework auf GitHub bereit. Dabei wird eine einzeilige Aufgabe, z. B. die Entwicklung eines Spiels, vom System eingelesen und dann auf ein hierarchisches Team aus Agenten verteilt. Diese Agenten haben verschiedene Rollen, …
In der heutigen Ausgabe des Wochenrückblicks blicken wir auf ein neues Modell von IBM und einen Ausblick auf neue Features in der ChatGPT-Oberfläche von OpenAI.
Wie ich an der einen und anderen Stelle im Wochenrückblick schon einmal erwähnt habe, beschränkt sich die Transformer-Architektur mittlerweile nicht mehr nur auf Textaufgaben. Mit Vision Transformers lässt sich dies auch auf die grafische Ebene erweitern.
In einer Kooperation zwischen IBM und der NASA wurden nun die Prithvi-Modelle auf Hugging Face veröffentlicht. Sie ermöglichen es, ein Satellitenbild einzugeben und z. B. vorhersagen zu lassen, welche Gebiete am ehesten Fluten ausgesetzt sein könnten.
Um diese Vorhersagen zu ermöglichen, hat IBM Daten aus dem Harmonized Landsat Sentinel-2-Projekt (HLS) herangezogen, um ein Foundation Modell zu trainieren. Im HLS-Datensatz befinden Satellitendaten, die mit je 30 Metern pro Pixel aufgelöst sind. Auf der technischen Seite wird ein Vision Transformer mit Masked Autoencoder eingesetzt. Das Foundation Modell kann nun von weiteren Forschern feingetuned werden, um die jeweiligen Vorhersagen weiter zu verbessern. Durch IBMs Arbeit sollen nun mehr als 250.000 TB an Missionsdaten von der NASA besser zugänglich gemacht werden. Weitere Details zum Projekt können im Blogartikel und in der Pressemitteilung von IBM …
In diesem Wochenrückblick kann ich euch wieder drei spannende Nachrichten präsentieren, die abbilden, was in den letzten Tagen besondere Aufmerksamkeit in der AI-Community erhalten hat.
Wie in fast jeder Woche kann ich euch auch dieses Mal wieder von einem neuen Modell berichten. Das Team rund um Stability AI hat am 26. Juli SDXL 1.0 veröffentlicht. SDXL baut auf Stable Diffusion auf. In der kürzlich erschienenen Version 0.9 konnten viele Eindrücke bereits gesammelt werden.
Dabei handelt es sich um ein Text-zu-Bild-Modell, welches Eingaben in 1024x1024 Pixel große Bilder konvertiert. Das Modell wurde weiter für Fotorealismus optimiert und kann nun besser die Farben, Kontraste und Schatten abbilden, so die Pressemitteilung.
Auf technischer Ebene besteht SDXL 1.0 aus zwei Modellen: einem Base-Modell mit 3,5 Mrd. Parametern und einem Refiner-Modell mit 6,6 Mrd. Parametern. Grob lässt sich das Refiner-Modell so vorstellen, dass es die Vorarbeiten vom Base-Modell nochmals deutlich verbessert, um die Qualität zu steigern.
Stability AI gibt an, dass Consumer-GPUs mit 8 GB VRAM bereits ausreichen, um damit arbeiten zu können. Ich konnte SDXL 1.0 bereits auf einer A10-Karte ausprobieren und es ermöglicht beeindruckende Ergebnisse.
Als Open-Source-Modell kann man sich die Gewichte für das Base- und Refiner-Modell laden, um …
In dieser Woche gab es spannende Neuigkeiten von Meta AI und aus der Welt der Regulierung.
Einen Paukenschlag gab es in dieser Woche von Meta AI: Llama 2 wurde veröffentlicht mit einer Lizenz, die explizit auch die kommerzielle Nutzung erlaubt. Die Gewichte können auf Antrag gemäß den Nutzungsbestimmungen heruntergeladen werden. Verfügbar ist das Modell mit 7, 13 oder 70 Mrd. Parametern. Es wird eine Kontextlänge von bis zu 4096 Token unterstützt. Trainiert wurde das Modell auf über 2 Billionen Tokens. Das Finetuning wurde einerseits überwacht (SFT) und andererseits auf menschlichen Präferenzen (RLHF) vorgenommen.
Im Wettbewerb der LLMs geht es weiter um die Stellung der Vorherrschaft. Wer das beste Modell möglichst frei zur Verfügung stellt, bildet einen wichtigen Ankerpunkt, auf dem Forscher ihre Arbeiten aufbauen. Das ist auch bei kommerziellen Interessen sinnvoll, da eine große Nutzerbasis erreicht werden kann, die innovative Forscher und Entwickler hervorbringt, die wiederum den Ruf und die Marktposition des Unternehmens stärken.
Meta Platforms erhält nun die Möglichkeit, vom einstiegen Social-Media-Riesen zum Multimedia-Konzern aufzusteigen, der die Möglichkeiten hat, alle Medien zu bedienen. Die AI-Abteilung hat sich einen guten Ruf gemacht und versucht diesen nun im stark umkämpften Feld der LLM-Foundation-Models zu verteidigen. Dass Meta AI sich …
Heute habe ich die Timeline aktualisiert, die einen Überblick über aktuelle und wichtige Modelle gibt. Es wird schnell ersichtlich, dass wir uns in der KI-Welt mittlerweile wieder in der Detailarbeit befinden und der große Schub an neuen LLMs immer weiter abnimmt. Aber was hat uns diese Woche beschert?
Diese Woche wurde ein Paper diskutiert, das recht unscheinbar daherkommt: "Low Resource" Text Classification: A Parameter-Free Classification Method with Compressors. Kurz gefasst wollen die Forscher die Tatsache feiern, dass ihr Modell weniger ressourcenintensiv ist.
Dafür haben sie eine reizend unaufwändige KI-Methode für Textklassifikation vorgestellt, die eine vergnügliche Kreuzung aus einem simplen Kompressor - ähnlich wie gzip - und einem k-Nearest-Neightbor-Klassifikator ist. Und das spannendste an der Sache? Sie kommt komplett ohne Trainingsparameter aus. Was für eine erfrischende Neuheit, denn das Modell spielt etablierte Konkurrenten wie BERT auf allen fünf OOD-Datensätzen gnadenlos aus.
Was uns das Paper zeigt, ist, dass nicht alles nur durch Deep Neural Networks beherrscht wird. Wer eine clevere, einfache Methode entwickelt, kann trotzdem erstaunliche Ergebnisse erreichen. Der Quellcode für das Verfahren ist beachtenswert kurz und unter GitHub abrufbar.
Wer sich noch an den Anfang von OpenAI erinnern kann, wird um die Rolle von …
Langsam kündigt sich, wie wir heute in den Nachrichten sehen werden, in der KI-Welt eine kleine Sommerpause an, sodass es etwas ruhiger wird. In dieser Woche hat OpenAI wieder für die eine oder andere Schlagzeile gesorgt, weswegen sich der Wochenrückblick speziell darauf konzentrieren wird.
Traffic von fremden Webseiten zu messen ist eine gar nicht so einfache Angelegenheit. Am Ende des Tages weiß nur der Betreiber der Webseite, wie viele Inhalte er an wie viele IP-Adressen ausgeliefert hat, woraus man eine Nutzerzahl abschätzen kann. SimilarWeb ist ein Dienstleister, der sich auf Schätzungen über den Traffic externer Webseiten spezialisiert hat und nimmt dafür Ersatzmetriken zur Hilfe.
Über ChatGPT berichtet SimilarWeb nun, dass der Traffic von Mai zum Juni hin um etwa 10 Prozent gesunken sein soll. Die Anzahl der einzigartigen Nutzer soll um etwas über 5 Prozent, die auf der Webseite verbrachte Zeit um etwa 8 Prozent gesunken sein.
Unabhängig von den Zahlen kann ich den Trend nachvollziehen. Einerseits zeichnet sich die Sommerpause ab, in der viele im Urlaub sind und den Dienst weniger beruflich "ausprobieren". Andererseits weiß der beträchtlich große Nutzerkreis von ChatGPT mittlerweile um die Funktionen des LLM, weshalb die Neugier der Nutzer vermutlich abnimmt. …
Im heutigen Wochenrückblick schauen wir auf einen spannenden Essay, ein interessantes Tool für Code-Migrationen und ein neues Open-Source-LLM für große Sequenzlängen.
Beginnen wir den heutigen Wochenrückblick mit einem Artikel, der in der Woche disktutiert wurde. swyx hat auf Latent Space den Artikel The Rise of the AI Engineer veröffentlicht. Im Artikel geht es um die Entstehung eines komplett neuen Berufszweiges: dem AI Engineer. Dabei ist der AI Engineer die Weiterentwicklung des Prompt Engineers und wird im Essay auf einer Skala eingeordnet. Der AI Engineer beschäftigt sich wenig mit der genauen Funktionsweise von ML-Modellen, vielmehr versteckt ihm die API wie z. B. von OpenAI die technischen Details und ermöglicht ihm, sich auf das Wesentliche zu konzentrieren: sein Produkt.
War es vor zehn Jahren noch ein forschungsnahes Vorhaben, ein Produktempfehlungssystem zu entwerfen, ist es durch die Verfügbarkeit von schnell einsetzbaren Diensten heutzutage möglich, die gewünschte Funktionalität zu integrieren. Integration, das ist es, was den AI Engineer ausmacht. Er muss nicht wissen, wie ein LLM genau funktioniert, er muss nur wissen, was es tut. Insbesondere erwähnt der Autor des Essays, dass die Few-Shot-Modelle dazu geführt haben, dass ML-Forscher selber nicht mehr das Modell wie GPT-4 auf …
Viktors Blog is a blog about technology, open source software, artificial intelligence and economy. It was started in 2016 and steadily developed.