Seit einigen Wochen veröffentliche ich den Wochenrückblick, in dem ich regelmäßig über aktuelle Nachrichten aus der KI-Welt berichte. Auch in dieser Woche gab es drei Neuigkeiten, die ich euch nicht vorenthalten möchte. Endlich gibt es auch wieder neue Modelle!
RWKV-Paper veröffenlicht
Nicht alles in der Welt der Large Language Models (LLM) beruht auf Transformers. Sie sind ein Weg, aber nicht der einzige. Das Team rund um Peng, Alcaide und Anthony hat mit Receptance Weighted Key Value (RWKV) eine neue Methode und Architektur entwickelt, mit der es möglich ist, LLMs über rekurrente neuronale Netze (RNNs) statt Transformer umzusetzen.
Der Hintergrund ist, dass beim Einatz von Transformern die Speicher- und Rechenkomplexität eine große Herausforderung darstellt. Sie wächst quadratisch, während RNNs ein lineares Wachstum aufweisen. RNNs mit klassischen Architekturen wiederum waren allerdings nicht so leistungsfähig wie gewünscht. RWKV versucht nun, die Leistungsfähigkeit bei RNNs deutlich zu verbessern, sodass sie mit Transformern mithalten und ihre Skalierungsvorteile ausnutzen können.
Die Ergebnisse wurden vorab in einem Preprint veröffentlicht und können z. B. auf Hugging Face ausprobiert werden. Der Code befindet sich auf GitHub. Schauen wir also, wie sich das Projekt in den nächsten Wochen entwickelt.
Falcon-Modelle erschienen
Wie bereits in den letzten Wochen erwähnt, …