Während der letzte KI-Wochenrückblick etwas kürzer ausfiel, da die gefühlt gesamte Tech-Welt nach Cupertino geschaut hat, gibt es in dieser Woche etwas mehr zu berichten. Starten wir also rein!
AI und Compliance
Üblicherweise steht bei Tech-Themen die Technologie im Vordergrund. Nicht so bei KI. Man kann es vielleicht dem Zeitgeist oder den Erfahrungen mit dem Internet zuschreiben, aber bei rechtlichen oder gesellschaftlichen Auswirkungen wird bei KI ein strenger Maßstab angelegt. So hat in dieser Woche das EU-Parlament den lange diskutierten AI Act eine Stufe weitergeschoben. Im wesentlichen bedeutet der AI Act, dass man nicht mehr jede beliebige KI-Anwendung auf den Markt werfen kann. Erfüllt eine Anwendung bestimmte Kriterien, müssen zusätzliche, bürokratische Schritte zur Qualitätssicherung und Folgenabschätzung vorgenommen werden. Welche Kriterien das sind und was daraus folgt, ist im aktuellen Prozess schwer zu verfolgen, reicht(e) aber von "ChatGPT wird praktisch verboten" bis "Es wird sehr aufwändig".
Besonders schwierig ist es, die Auswirkungen eines solchen Regelwerks anhand konkreter Beispiele nachzuvollziehen. Risihi Bommasani vom Stanford CRFM hat diese Woche auf Twitter demonstriert, wie das aussehen könnte. Er und sein Team haben für 10 verschiedene KI-Anbieter in einer Punktematrix dargelegt, wo welche Anbieter punkten und wo noch Nachbesserungsbedarf ist. Besonders gut kam BigScience (BLOOM) an, hier wurden 36 von 48 möglichen Punkten geholt, besonders bei "Data sources", "Data governance" und "Downstream documentation" konnte BigScience punkten.
Sehen, was der andere sieht
Typische Ermittlerdokus sind der KI schon seit Jahrzehnten voraus und können die Regeln von Raum und Zeit auf Überwachungsvideos außer Kraft setzen. Aktuelle Entwicklungen in der KI ziehen aber langsam nach. Mit Seeing the World through Your Eyes haben Alzayer et al. von der University of Maryland, College Park gezeigt, dass die Reflexion der Pupillen eines Menschen in Bildsequenzen genutzt werden kann, um das Gesehene aus seiner Perspektive als 3D-Modell abzubilden.
So wird "Point of View" real und kann benutzt werden, um Gegenstände, die die Person sieht, wiederzuerkennen. Natürlich ist die Technologie nicht perfekt und verfügt über eine geringe Auflösung, zeigt aber, dass in den verschiedensten Bereichen der Musterverarbeitung Entwicklung stattfindet. Dieses Paper setzt auch neuronale Netze lediglich am Rande ein, was noch einmal verdeutlicht, dass KI nicht nur aus LLMs und Transformers besteht.
LLMs und Secret Sauce
Nichtdestotrotz bleiben die LLMs ein Thema. Galine Alperovich hat im letzten Monat eine Zusammenstellung von Tricks veröffentlicht, um 100K Context Windows zu ermöglichen. Mit Claude haben wir bereits ein System gesehen, was so ein enormes Kontextfenster umsetzt, auch MPT weist mittlerweile Kontextfenster um die 65.000 Token auf.
Ihre dargelegten Hinweise können genutzt werden, um das Training von eigenen Modellen zu optimieren, denn das stellt heutzutage die große Kunst dar. Dass das Training generell möglich ist, haben wir gesehen. Es aber auch aufwandsarm umzusetzen, kann einerseits die Kosten senken, aber auch das Training für kleinere Akteure generell erst möglich machen.
Abschließend für den heutigen Wochenrückblick können wir auch nochmal auf OpenLLaMA schauen. Viele Teams haben sich in der Zwischenzeit rangesetzt, um Meta AIs Arbeit zumindest zu reproduzieren. Die Ergebnisse trudeln Woche für Woche ein. Seit dieser Woche sind nun auch die Gewichte für OpenLLaMA-13B auf HuggingFace verfügbar.
Bleiben wir gespannt, was uns auch die nächste Woche wieder an Neuigkeiten bringt!