None
Nachrichten

KI-Wochenrückblick KW 20/2023

by Viktor Garske on May 21, 2023, 11:50 p.m.

Es wird ruhiger im Umfeld der künstlichen Intelligenz, aus diesem Grund wird es in diesem Wochenrückblick mehr um Anwendungen als Grundlagenforschung gehen.

DarkBERT

In dieser Woche hat DarkBERT die Runde gemacht. Dabei handelt es sich um ein Sprachmodell der RoBERTa-Klasse, das von Forschern aus Südkorea speziell auf Darknet-Inhalte trainiert wurde. Ziel soll es sein, die Umgangsformen in diesen schwerer zugänglichen Netzwerken analysieren zu können. Aus diesem Grund wird das Modell auch nicht veröffentlicht.

Mich hat diese Nachricht in erster Linie an das Projekt GPT-4chan von Yannic Klicher erinnert. Wenig überraschend ist es daher, dass auch dieses Modell in einigen Metriken besser abschneidet als die weitverbreiteten LLMs.

Drag Your GAN

KI besteht nicht nur aus LLMs, das habe ich schon öfter erwähnt. In den letzten 5 Jahren dominierten vor allem die Generative Adverserial Networks (GANs), die sich mit der gezielten Generierung und Manipulation von Bildern beschäftigt haben.

Hier gibt es mit dem Paper Drag You GAN gute Neuigkeiten: Forscher vom Max-Planck-Institut, vom MIT und Google haben eine Methodik entwickelt, mit der es möglich ist, interaktiv und Punkt-basiert Änderungen an Fotos umzusetzen. Damit kann einfach ein Gesicht verschoben oder ein zugekniffenes Auge im Sonnenlicht wieder aufgeklappt werden. Gut, dass es hier auch weitergeht.

KI-Detektoren klassifzieren

In dieser Woche kursierte besonders die Nachricht, dass ein texanischer Professor Studenten mithilfe von ChatGPT zu überführen glaubte, indem er ChatGPT gefragt hat, ob Hausarbeiten der Studenten vom einem LLM geschrieben wurden. Das LLM tat das, was es besonders gut konnte und halluzinierte. Studenten mussten um ihre Noten und sogar ihre Abschlüsse fürchten. Durch die nun erlangte Aufmerksamkeit wurde nun eine Klärung herbeigeführt.

Dass von diesen angeblichen KI-Klassifikatoren im aktuellen Zustand nicht viel zu halten ist, unterstreicht auch das aktuelle Paper GPT detectors are biased against non-native English writers. Es geht dem Umstand nach, dass die Detektoren genau die Texte fälschlich als KI-generiert klassifzieren, die von Nicht-Muttersprachlern stammen. Einerseits führt das zu False Positives und bietet andererseits Angriffspotential, um KI-generierte Texte zu verschleiern. Alles in allem kein gutes Ergebnis für die Detektoren.

An dieser Stelle wird auch eine übliche Schwäche des Lernens aus Beispielen in Verbindung mit neuronalen Netzen deutlich. Oftmals weiß man nicht, was genau gelernt wird und das lässt sich auch schwer herausfinden, Stichwort Explainable AI. Man glaubt, herausgefunden zu haben, was KI- und Nicht-KI-Texte unterscheidet, kann in Wirklichkeit aber nur zwischen "sprachlich geschliffenen" und "sprachlich nicht-geschliffenen" Texten unterscheiden.

Es ist also noch viel zu tun und wir können gespannt bleiben, was auch die kommende Woche uns bringt!

Author image
Viktor Garske

Viktor Garske ist der Hauptautor des Blogs und schreibt gerne über Technologie, Panorama sowie Tipps & Tricks.

Comments (0)

Comments are not enabled for this entry.